森林文学

字:
关灯 护眼
森林文学 > 我只想当一个安静的学霸 > 370章 暴走

370章 暴走

  370章 暴走 (第1/2页)
  
  欧叶进入答辩会现场,将她的博士论文投影到屏幕上。
  
  “弗拉蒙特教授,努曼伯格教授,汉克斯教授,下午好。”欧叶礼貌的说到,瞟了眼旁听席的沈奇和林登施特劳斯。
  
  主答辩官弗拉蒙特教授是一张扑克脸,他不苟言笑的说到:“欧,这是你的博士研究生第四学期。”
  
  欧叶点点头:“是的。”
  
  弗拉蒙特教授为人严厉,沈奇为欧叶捏了把汗。
  
  不过欧叶入场之后发挥平稳,并没有虚,这是个好兆头。
  
  弗拉蒙特教授:“欧,你的博士论文《耶斯曼诺维奇猜想的证明》,我们三位答辩官已看过,接下来将由你进行3到5分钟的陈述,然后我们会提问。”
  
  欧叶:“好的。”
  
  3到5分钟的陈述?沈奇有些意外,正常情况下博士研究生的开场陈述时间在15-20分钟之间。
  
  林登施特劳斯扭头笑了笑,他的眼神告诉沈奇:我们很宽容,因人而异。
  
  欧叶手持翻页笔,切换她博士论文的PPT
  
  欧叶切到第3页:“这个,卢卡斯序列。”
  
  欧叶在第4页不做停留,直接切到第5页:“这个,卢卡斯偶数,等价。”
  
  PPT页码显示有101页,欧叶平均5秒钟过一页。
  
  三位答辩官并未提出任何异议,就静静的看着欧叶飞快的刷PPT。
  
  Poer-Point,这是真正的PPT……沈奇从未见过如此简洁的PPT汇报,而PPT的精髓正是如此:强烈的观点。
  
  制作PPT的要点在于突出每一页的重点,PPT汇报者在有限时间内须用最精炼的语言表达最强烈的观点。
  
  欧叶的PPT表达精炼到极致,101页,她5分钟就陈述完毕,语言表达风格跟平常类似,只说重点不磨叽。
  
  “OK,谢谢你的陈述,欧,接下来进入提问环节。”弗拉蒙特教授率先发问,他说到:“你刚才提到了卢卡斯序列,并在论文中定义为un=un(α,β)=α^n-β^n/α-β,其中n为正整数,这个定义没问题,这是前提。那么我要问的是,基于这个定义前提,如何反向求出un(α,β)的本原素除子?”
  
  弗拉蒙特教授这个问题是个陷阱啊……沈奇已将欧叶的打印版论文过了一遍,反向求出un(α,β)的本原素除子是个逻辑陷阱,因为un(α,β)不具备本原素除子。
  
  欧叶神志清醒反应灵敏,她答到:“无法求出。”
  
  弗拉蒙特教授追问:“为什么?”
  
  欧叶切换PPT到13页,操作翻页笔的激光照射到un(α1,β1)=±un(α2,β2),并同步解释:“它不具备,本原素除子。”
  
  “是吗?你确定?”弗拉蒙特教授继续追问。
  
  “我确定。”欧叶无比坚定。
  
  “下面由努曼伯格教授、汉克斯教授提问。”弗拉蒙特教授不再发问,他低头在答辩记录纸上写写画画。
  
  努曼伯格教授长着一张圆脸,秃顶,笑眯眯像是个白人版的弥勒佛,他问到:“欧,关于引理1,我并不是太明白你取5≤n≤30且n≠6的依据是什么?”
  
  “嗯。”欧叶早有准备,她切换PPT到39页,这页引人注目的重点是方程(11):(2k+1)^x±(2k(k+1)))^y√-2k(k+1)=±(1±√-2k(k+1))^z
  
  
  
  (本章未完,请点击下一页继续阅读)
『加入书签,方便阅读』
热门推荐
在木叶打造虫群科技树 情圣结局后我穿越了 修神外传仙界篇 韩娱之崛起 穿越者纵横动漫世界 不死武皇 妖龙古帝 残魄御天 宠妃难为:皇上,娘娘今晚不侍寝 杀手弃妃毒逆天